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The Leibniz Principle in Quantum Logic 

R o b e r t o  G i u n t i n i  ~ and P e t e r  M i t t e l s t a e d t  1 
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The principle of the "identity of indiscernibles" (Leibniz Principle) is investigated 
within the framework of the formal language of quantum physics, which is given 
by an orthomodular lattice. We show that the validity of this principle is based 
on very strong preconditions (concerning the existence of convenient predicates) 
which are given in the language of classical physics but which cannot be fulfilled 
in orthomodular quantum logic. 

1. INTRODUCTION 

The "principium identitatis indiscernibilium" was first formulated by 
Leibniz as a metaphysical principle. This principle--referred to here as 
"Leibniz principle"--states that two objects which cannot be distinguished 
by any interior property are at all identical (Leibniz, 1875-1890, Vol. V, 
p. 401, Vol. VI, p. 608). Leibniz illustrated the plausibility of the "identity 
of indiscernibles" by several examples, partly from everyday life and partly 
from mathematics. In his writings there are at least two proof attempts for 
the principle, both of which are not really convincing. (1) A formal proof: 
If one assumes that the set of properties which pertain to an object contains 
a naming predicate which is unique with respect to the object, then the 
indistinguishability implies the identity (Lorenz, 1969). (2) A theological 
proof: In the actual world there are no two objects with all properties in 
common, since for the creator of the world there was no sufficient reason 
to create the same thing twice (Leibniz, 1875-1890, Vol. VI, p. 371). 

The present paper will not be concerned with the question of whether 
the properties of a class of real objects are such that the Leibniz principle 
holds for this class. This may happen for objects which belong to the domain 
of classical physics, but presumably it does not happen for the class of 
quantum mechanical objects (Mittelstaedt, 1985, 1986). Here we investigate 
the formal language ~o of quantum physics, sometimes called quantum 
logic, with respect to the question of whether in ~o the Leibniz principle 
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holds as a theorem. This problem is treated here exclusively by logical and 
semantical means, making use of the well-known properties of 5r but 
without any recourse to quantum mechanics as a physical theory and without 
making use of experimental facts. 

Along this line of investigation, there are some recent papers by Dalla 
Chiara (1985, 1986) and Dalla Chiara and Toraldo di Francia (1985) in 
which the validity of the Leibniz principle for quantum objects is treated 
from a physical aspect (Dalla Chiara and Toraldo di Francia, 1985) as well 
as from a semantical point of view (Dalla Chiara, 1985, 1986). It turns out 
that an algebraic or Kripkean semantics for second-order quantum logic 
does not automatically provide a violation of the Leibniz principle. For 
fermions a quaset-theoretical semantics for a second-order language can be 
constructed in which the Leibniz principle holds, whereas in the case of 
bosons we are faced with a violation of the Leibniz principle. The invalidity 
of this principle can be further illustrated by comparing the semantical 
models of bosons with Henkin-style semantics for second-order classical 
logic (Scott, 1969) in which the Leibniz principle fails. The metalogical 
reason why the Leibniz principle fails is the same in both cases, namely 
the restriction to a proper subset of all properties of a model. But whereas 
such a restriction is quite artificial in second-order classical logic, it seems 
to be strongly suggested in the case of models for bosons by the physical 
properties of such pa~icles. 

In contrast to these investigations, which treat the validity of the Leibniz 
principle from a semantical point of view, making use of some contingent 
properties of quantum systems, e.g., the distinction between Bose and Fermi 
particles, in the present paper the Leibniz principle is investigated under a 
purely syntactical aspect. Quantum logic as a second-order object language 
is taken here for granted. We then show that the Leibniz principle can be 
proved in classical logic as well as in quantum logic under the premise that 
for any object there exists a naming predicate which is unique with respect 
to the other object. If  within the framework of the formal language objects 
are introduced by definite descriptions, the premise mentioned holds in 
classical logic but it cannot be fulfilled in quantum logic. Hence we arrive 
at the conclusion that the Leibniz principle holds in classical logic for 
objects constituted by definite descriptions, but that it is not valid in quantum 
logic. 

2. THE LEIBNIZ PRINCIPLE IN FORMAL LANGUAGES 

2.1. The Formal Language 

We consider an orthomodular lattice ~o of proposition A ~ ~o which 
state that a predicate P holds for an object x, i.e., A = P(x). Objects 
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x, y , . . .  cor respond  to qua n t um  systems and  predicates P, Q , . . .  to observ- 
able properties,  such as spin, position, angular  m o m e n t u m  etc. The lattice 
~o  will of ten be assumed to fulfill the addit ional  law a(37o) o f  atomicity:  

For  any propos i t ion  A e 370 with A ~ 0 there exists an a tom W e  ~4(37o), 
where ~4(37o) is the set o f  atoms o f  370, such that  W<_A. 

and the covering law C(~o): 

I f  A e  37o and W e  ~r satisfy W A A = 0 ,  then for any X e 3 7 o  with 
A -< X -< A v W it follows that  X = A or  X = A v W. 

The propert ies a(37o) and c(S~0) are necessary condit ions which must  be 
fulfilled if all proposi t ions  A e 37o can be related to a single object S as a 
referent such that  A = P(S)  (Stachow, 1985). Hence we assume here most ly 
that the condi t ions  a(37o) and c(37o) hold  for  370- However ,  it turns out  
that  even the strong requirements a(37o) and c(37o) are not  sufficient for  
the validity o f  the Leibniz principle. Moreover ,  it will be shown that  for  an 
a tomic lattice 37 0 which fulfills the covering law, the most  impor tant  premise 
o f  the Leibniz principle can be refuted. 

2.2. The Leibniz Principle 

Let S# be a set o f  objects x, y , . . . ,  ~ a set o f  predicates P, Q , . . .  ; and 
37 a lattice o f  propos i t ion  A = P(x). The " ident i ty"  o f  objects will be denoted  
by = .  Then the Leibniz principle reads 2 

Theorem I. (LP) For  any elements x, y e ~ :  I f  x ~ y is true, then there 
exists a predicate P, such that  1 -< P(x) and 1 - 7P(y) .  

Proof. Assume (LP) does not  hold. Then there exist elements x, y such 
that x ~ y is true and for  any  predicate P e ~ the implicat ion P(x) <- P(y) 
holds. Let (x, y)  be a pair  o f  elements for which this is the case and P e 
be the predicate  "being an x," i.e., P(z):= z E {x}. Then we get 1---x # y 
and P(x) <- P(y), and because o f  1--  P(x)  it follows 1-< P(y) and thus 
x ~ y A P(y) <- O, since y e {x} is false for  x ~ y. �9 

2Here we use the following terminology. The equivalence relation is denoted by = and the 
implication relation by -<. For the "true proposition" we write 1 and for the "false proposition" 
0. Hence the truth of a proposition A can be expressed by 1 -< A and its falsity by A-< 0. 
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This proof  is based on the premise that for any x ~ 5r there exists a predicate 
P (to be an x) such that P ( x )  is true and x ~ y A P ( y )  <- O. If  we formulate 
this premise (PLP) of the Leibniz principle explicitly, it reads 

PLP: For any object x e 5r there exists a predicate P, such that P ( x )  
is true and for any y e 5r it holds x ~ y A P ( y )  <-- O. 

It is easy to show that we have the following result. 

Theorem 2. (WLP) The premise (PLP) implies the Leibniz principle 
(LP). This theorem will be called the " w e a k  Leibniz principle" (WLP). 

In the next section we first discuss the validity of the "weak Leibniz 
principle" (WLP) in ~R and in Sg0. Its meaning will be discussed later. 

2.3. Discuss ion of  the W L P  

The WLP states that under the premise (PLP) the Leibniz principle LP 
holds. The proof makes use of the rule (in propositional logic) 

x r y A P ( y ) < - O ~ x #  y < - T P ( y )  (i) 

which is true in ~gn but not generally in ~o- Here however we are dealing 
with the special propositions x # y ,  P ( y ) ,  and 7 P ( y )  which have the 
following properties: 

x ~ y ~ P ( y )  and x ~ y ~ -TP(y) ,  i.e., x ~ y and P ( y )  are commensur- 
able, 3 where P is the predicate "to be an x." If  P ( y )  and x ~ y were not 
commensurable, one could not decide whether the object x with 1 <-P(x)  
is different from y, i.e., whether x ~ y is true. 

For these reasons we have the commensurability relations: 

x # y ~ P ( y ) ,  x # y ~ -1P(y )  

In orthomolecular logic the rule A ^ B-< 0 ~ A-<--nB can be proved if the 
two commensurability relations A - B  and A - - ~ B  are presupposed 
(Mittelstaedt, 1978). Hence, the relation (I) is valid even in the orthomodular 

3Here we use the notation A ~ B for the (symmetric) commensurability relation A = (A ̂  B) v 
(A ̂  ~B) (Mittelstaedt, 1978, pp. 31ff). 
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logic ~o and thus the weak Leibniz principle holds not only in ~B but also 
in the weaker logic ~o.  

3. THE N A M I N G  PREDICATE 

In the languages ~B and Afo the Leibniz principle (LP) is valid if  for 
any x c ~ there exists a predicate N which pertains to x and which is unique 
with respect to the object (PLP). This predicate N will be called the naming 
predicate of x. In this section we investigate some properties of  naming 
predicates. 

In a physical theory like quantum mechanics,  objects are not given as 
primitive elements but must be constituted by means of "essential" and 
"accidential" properties (Mittelstaedt, 1985, 1986). In a similar way in 
quantum logic ~o objects x c 6e must be introduced by means of definite 
descriptions. In the present situation this can be done with naming predi- 
cates, i.e., an object S is given by 

s = (~X)Ns(X)  

where Ns is the naming predicate "to be an S." For the naming predicate 
Ns we have the uniqueness property 4 

1 <- Ns(S)  A V (Ns(S')  "-> S = S') (UN) 
S" 

and for any other predicate B ~ ~(L#) Russell 's formula holds, 

B ( S ) =  3 ( Ns(x )  A B(x)  A V Ns(y)--> x = y }  
y 

Within the f ramework of  the language ~fo, a naming predicate must fulfill 
two additional requirements, as follows. 

1. The name N is an atom of ~o. I f  S = (-~x)Ns(x) and Ns is not an 
atom, then there exists an atom A s.t. 0 < A < Ns. Hence for the element 
a = ( ~ x ) A ( x )  we have also Ns(a)  and thus according to (UN),  S =  a. 
Furthermore, from S = a and A(a)  we get A(S)  and due to the uniqueness 
1 -<- Vx (Ns(x )  --> A(x) )  and thus Ns <- A, which contradicts the assumption. 

2. The name N is in the center N(Afo). I f  N is an atom, N e s~(Af), 
and if Ae = ~fB is a Boolean lattice, then for any A c ~B one has 

N <_ A or N <-- ~ A  (D) 

41f in a physical theory the position predicate, say, satisfies this requirement, the uniqueness 
property is called "impenetrability" (Mittelstaedt, 1985, 1986). 
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which means that an object n = (~x )N(x )  possesses any other property 
A ~ N or its negation. In or thomodular  logic ~o this determination property 
(D) of  a name is only given if N -  A; i.e., if the name N and the predicate 
A are commensurable.  

Thus we have the following result. 

Theorem 3. For any proposit ion A ~ ~o and any atom N ~ M(~o)  s.t. 
A -  N, it follows that 

N <- A or N <_-TA 

Consequently, a name N ~ M(~o) which fulfills the condition (D) for any 
A ~ ~o must be commensurable  with any A and thus belongs to the center 
~(~o) of ~o. 

It is worthwhile to note that a Boolean lattice 3~(B k), which is generated 
by a finite number  of  elements G1, G 2 , . . . ,  Gk is atomic and the elements 
N ( ~ ) ~ M ( ~  k)) are given by N (~)=G~ ~ ) ^ G  (~)^ . . .  ^ G ~  ~) with G~ ~) 
{G~,-aG~}. The atoms N(~)~ M ( ~  k)) then satisfy the condition (D) and 
since ~ ( ~ B )  = ~B, all atoms are in the center of  ~ k ) .  Hence the require- 
ments of  the premise (PLP) are fulfilled and we arrive at the following 
interesting result: I f  within the f ramework of a Boolean language ~ g )  
objects S~ are given by definite descriptions Si = (~x)N~(x), where N~ are 
naming predicates, then the Leibniz principle holds for these objects as a 
theorem. 5 

4. N A M I N G  IN O R T H O M O D U L A R  L O G I C  

According to the previous discussion, a naming predicate N is an atom, 
N ~ M(~o), and is in the center N ~ ~ (~o) .  In this section we prove that 
there exists no naming predicate in ~o with these properties. 

We will distinguish two cases: (i) an or thomodular  lattice does not 
admit superselection rules, (ii) an or thomodular  lattice admits superselection 
rules. 

Definition. An or thomodular  lattice ~o does not admit superselection 
rules iff for any pair of  atoms W1, Wz of  &Co (W1 ~ W2), there exists an 
atom W3 of gs s.t. (i) W~ ~ WE, W1 # W3, and W2 ~ W3; (ii) W~ v W2 = W~ v 
W3: W2v W 3, 

Lemma. Let ~o be an atomic orthomodular  lattice. I f ~ 0  does not admit 
superselection rules, then Aeo is not a Boolean lattice. 

5The way of reasoning which leads to this surprising result reminds one of the "transcendental 
arguments" In Kant's critique of pure reason. Hence one could consider the Leibniz principle 
as a "synthetic judgement a priori" which holds for individual objects constituted by definite 
descriptions. 
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Proof Let W1, W2, W3 be three atoms as in the definition. Let us 
suppose, by contradiction, that 5fo is a Boolean lattice. Then W36 
(W1v W2)=(W3 ̂  W1)v(W3^ W2); but W3A Wl=0= W3  ̂W2, since 
W1, W2, W3 are atoms. Now, W3 -< W1 v W2, since W1 v W2 = W1 v W3 and 
therefore W3 ̂  ( W1 A W2) = W3; Hence, W3 = 0, contradiction IN �9 

Definition. An orthomodular  lattice ~o is called irreducible if the center 
~f(Sfo) is trivial. In all other cases the lattice is called reducible. 

Theorem 4. Let 5fo be an atomic orthomodular complete lattice with 
the covering property. ~o does not admit superselection rules /ff it is 
irreducible. 

Proof See Beltrametti and Cassinelli (1981) or Kalmbach (1983, p. 
142, Theorem 8). �9 

Theorem 5. Let 5(o be an atomic complete orthomodular lattice with 
the covering property not admitting superselection rules. Then there exists 
no naming predicate N s.t. N is an atom of  5fo and N ~ ~f(~o)- 

Proof Theorem 5 is a direct consequence of Theorem 4. If  an atomic 
orthomodular  lattice 5fo with the covering property admits superselection 
rules, then it is no longer irreducible. However, it can be represented as 
direct sum of  irreducible orthomodular lattices. In particular, ~o is the 
direct sum of  the segments ~0[0, zl], where zi are atoms of  the center 
o f ~ o .  �9 

We prove now the existence of  orthomodular lattices with superselec- 
tion rules where it is not possible to define any naming predicate belonging 
to the center. 

Let {g~} be a sequence of  Hilbert spaces s.t. dim(~gt~)-> 2, for any i and 
~ : =  @Yg~. It is well known that ~ is still a Hilbert space. Let ~(Yg) be the 
orthomodular  lattice of  all projections of  ~ and 

~(  ~ ) ~  := { P ~ ~(  2~)/ P = V P A P~, P~ = P~ci } 

Then it is not hard to prove that P(~)4~ is an orthomodular lattice with 
superselection rules. Furthermore, ~(~g)4~ is the direct sum of the segments 
~[0 ,  N(~ i ) ]  which are, of  course, irreducible. Then (Beltrametti and 
Cassinelli, pp. 101, 133) every ~(~) is an atom of  the center of N ( ~ ) ~ .  
Now, the atoms of ~ ( ~ ( ~ ) ~  are the central covers of the atoms of  
~ ( ~ ) ~ .  But, then, there exists no atom of  P(~)4~ belonging to the center 
of ~ ( ~ ) ~ ,  since otherwise there would exist a direct summand of  ~(~g)4~ 
of  length strictly less than 2. 
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It is possible also to show some examples of orthomodular lattices 
admitting naming predicates (see, for instance, the so-called orthomodular 
lattice 6 G12). But, as we will see, even if a set of naming predicates exists, 
it cannot be sufficient, where a set N of naming predicates is said to be 
sufficient/ff  for any A ~ 0 (A E ~o) there is a W e  N s.t. W--- A. This is the 
content of  the following results. 

Theorem 6. Let ~o be a complete atomic orthomodular lattice with the 
covering property admitting superselection rules. Then there exists no 
sufficient set of naming predicates. 

Proof. Let us suppose, by contradiction, the existence of  a sufficient 
set A c of  naming predicates in Z~o. Then VA ~ 0, 3 W e  JV s.t. W -  < A. But 
W is an atom of ~o belonging to ~(~o) .  Therefore, V A e ~ o :  W<.A or 
W<_-mA. Thus, the filter Fw=: {Be ~ o / W  <- B} is a proper and complete 
filter of Zao and, accordingly, the map h:~o--> ~2 (where ~2 is the two- 
element Boolean algebra) defined as 

h(A) = {10, if A e F w  
otherwise 

is a homomorphism from Ze 0 into ~2. Therefore, every naming predicate 
in N determines a homorphism from Lo into ~2- Let N #  be the set of  all 
such homomorphisms. It is easy to see that 2r is sufficient, i.e., VA ~ 0, 

1 

0 
Fig. 1. The orthomodular lattice G12. 

6The center of G12 is {0, 1, c, c• Therefore, c is an atom in the center of Gt2 (Fig. 1). 
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3h e N #  s.t. h(A)  = 1. If  A ~ 0, indeed 3 W e  2r s.t. W -  < A; but h w ( W )  = 1 
(hw is the homomorphism determined by W). Hence h w ( A ) =  1, since 
W -  < A. Let Z be an atom of  the center of  ~o. Then, 3h e X #  s.t. h (Z )  = 1. 
But then h is a homomorphism from the segment ~[0 ,  Z]  into ~2,  since, 
for any A, B ~ ~[0 ,  Z],  h (A  ^ B) = h(A)  n h( B) and h( A #  ) = h ( ~ A  ^ Z )  = 
h(-TA) = - h ( A ) ,  where # is the relative complementation with respect to 
which ~[0 ,  Z ]  is an ortholattice. Now, it is not hard to prove that the 
element A* =/~ Ai, where Aie  {A e ~[0 ,  Z ] / h ( A )  = 1} is an atom o f ~ [ 0 ,  Z]  
which belongs to the center of  ~[0 ,  Z].  But S~[0, Z]  is an atomic, complete, 
and irreducible orthomodular lattice with the covering property and there- 
fore, by Theorem 5, no atom can exist in its center, ~. It is also interesting 
to see that  the existence of  a naming predicate in the center of an 
orthomodular lattice ~97o implies the nonrefutability of  any tautology of  the 
classical propositional calculus. This is the content of the following results. 

Theorem 7. Let ~o be an atomic orthomodular lattice with the covering 
property and admitting superselection rules. If  there exists a naming predi- 
cate in the center of &Do, then every tautology of  the classical propositional 
calculus is not refuted in ~o.  

Proof It is a slight generalization of  the proof  contained in Giuntini 
(1987). �9 

5. CONCLUDING REMARKS 

Within the framework of a formal language, the Leibniz principle 
connects the identity of  objects with the indiscernibility by means of predi- 
cates. Without further assumptions, nothing can be said in general about 
the validity of  this principle. Here we made use of the fact that object 
systems in physics are constituted by means of  properties, which means in 
the formal language that objects are given by definite descriptions. Under 
this premise the Leibniz principle holds in the language of classical physics 
but it is no longer valid in orthomodular quantum logic. The assumption 
that the premise of the Leibniz principle were fulfilled in quantum logic 
could be formally disproved. Hence our conclusion is that the Leibniz 
principle cannot be proved in the usual way. 
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